How the Universe Works: War On Asteroids ep.9 2018
Scientists are using cutting-edge technology to stop an asteroid apocalypse, and for the first time, mankind is closer than ever to keeping Earth safe from these killer space rocks.
[video width="1280" height="720" mp4="https://video-clump.com/wp-content/uploads/2018/03/How-the-Universe-Works-ep.9.mp4"][/video]
Asteroid impact avoidance comprises a number of methods by which near-Earth objects (NEO) could be diverted, preventing destructive impact events. A sufficiently large impact by an asteroid or other NEOs would cause, depending on its impact location, massive tsunamis, multiple firestorms and an impact winter caused by the sunlight-blocking effect of placing large quantities of pulverized rock dust, and other debris, into the stratosphere.
A collision between the Earth and an approximately 10-kilometre-wide object 66 million years ago is thought to have produced the Chicxulub Crater and the Cretaceous–Paleogene extinction event, widely held responsible for the extinction of most dinosaurs.
While the chances of a major collision are not great in the near term, there is a high probability that one will happen eventually unless defensive actions are taken. Recent astronomical events—such as the Shoemaker-Levy 9 impacts on Jupiter and the 2013 Chelyabinsk meteor along with the growing number of objects on the Sentry Risk Table—have drawn renewed attention to such threats. NASA warns that the Earth is unprepared for such an event.
[video width="1280" height="720" mp4="https://video-clump.com/wp-content/uploads/2018/03/How-the-Universe-Works-ep.9.mp4"][/video]
Asteroid impact avoidance
Asteroid impact avoidance comprises a number of methods by which near-Earth objects (NEO) could be diverted, preventing destructive impact events. A sufficiently large impact by an asteroid or other NEOs would cause, depending on its impact location, massive tsunamis, multiple firestorms and an impact winter caused by the sunlight-blocking effect of placing large quantities of pulverized rock dust, and other debris, into the stratosphere.
A collision between the Earth and an approximately 10-kilometre-wide object 66 million years ago is thought to have produced the Chicxulub Crater and the Cretaceous–Paleogene extinction event, widely held responsible for the extinction of most dinosaurs.
While the chances of a major collision are not great in the near term, there is a high probability that one will happen eventually unless defensive actions are taken. Recent astronomical events—such as the Shoemaker-Levy 9 impacts on Jupiter and the 2013 Chelyabinsk meteor along with the growing number of objects on the Sentry Risk Table—have drawn renewed attention to such threats. NASA warns that the Earth is unprepared for such an event.